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Preface

We live around a star, the Sun. It is overwhelmingly the most
important feature of our environment – too bright to look at! –
and drives the dynamics of our climate, our economy, and our
daily routine. We understand it in remarkable detail: we can
measure its internal sounds and buoyancy waves as it rings
like a bell, and using the science of helioseismology we can ac-
curately reconstruct its physical properties almost all the way
to the core. We can see its magnetised wind as the Southern
Lights, and measure it quantitatively on satellites. We we can
even measure neutrinos directly reaching us from the nuclear
furnace at its core.
More broadly, stars are to astronomy what atoms are to chem-
istry: innumerable building blocks of amuch larger universe of
galaxies and cosmology. Each has remarkably simple physics,
really parametrized to a very good approximation only by their
mass and composition, and at higher order their rotation pe-
riod; these physics are so simple and reliable that we can accu-
rately model the spectra of whole galaxies in the distant uni-
verse just using laboratory physics and our understanding of
stars nearby.
Analytic reasoning is usually good enough to get rough under-
standing of the important phenomena in stellar physics, usu-
ally as scaling relations - but these are usually only accurate
to an order of magnitude or so, and real models require com-
puter calculations. In this course we will attempt to do a bit of
both.
This is a series of notes, aimed at a second-year undergrad-
uate level, about how stars work: exploring their simplicity
and complexity, assuming only a first year undergrad level of
classical mechanics, quantummechanics, and thermal physics,
and other physics that we will introduce ad hoc as we go along.
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These notes are based in part on the excellent lectures from
which I originally learned as an undergraduate at Berkeley, by
Eliot Quataert; on Peter Tuthill and Mike Ireland’s courses at
Sydney; and on the PHYS2082 course developed at UQ byHol-
ger Baumgardt, and by myself.
This book is compiled using Jupyter-Books, which allows us to
include Python calculations in the text; I aim tomake this avail-
able in the Open Astrophysics Library when it is in a mature
state. We will follow the style guide of Edward Tufte, using
margins for asides and illustrations to avoid interrupting the
flow of the text.
We will use cgs units for most calculations in this text, except
where otherwise noted.
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Notes

Wewill be using Python for computation in this book: in every
case, we will be using the same fundamental constants in SI
units, and the same imports of basic Python libraries:

import numpy as np
import matplotlib.pyplot as plt

G = 6.6743e-11 # N m2 kg-2; Newton's Constant
k_B = 1.380649e-23 # J/K; Boltzmann's Constant
m_p = 1.67262192e-27 # kg; proton mass

M_sun = 1.9884e30 # kg
R_sun = 6.957e8 # m
Teff_sun = 5780 # effective temperature, K

M_earth = 5.972e24 # kg
R_earth = 6371e3 # m
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1 Hydrostatic Equilibrium

The fundamental physics of stars is determined by a handful
of principles:

• the star is everywhere in pressure balance under its own
gravity, or hydrostatic equilibrium; hydrostatic from Greek ὕδωρ,

‘water’, and στάσις, ‘standing’; just
like water in a tank.

• its cooling by radiation must be met by
– energy production in its interior by nuclear fusion or
gravitational contraction,

– and energy transport to its surface by radiation, con-
vection, and conduction;

• how its material responds to pressure (parametrized the
equation of state) and to light (parametrized by opacity);
and

• in its interior and a star is typically rotating andmagnetic,
which we will neglect in most of these notes.

Let’s talk about hydrostatic equilibrium first.
An ordinary star like the Sun, throughout its whole body, is
to a very good approximation an ideal gas, and is fully ionized
except in its outermost layer. This means that the gas pressure
satisfies the equation of state

𝑝 = 𝑛𝑘𝐵𝑇
where 𝑝 is the pressure, 𝑛 is the
number density (particles per
volume) of the gas, 𝑘𝐵 is
Boltzmann’s constant (1.38 × 10−16

erg/K), and 𝑇 is the temperature in
kelvin.

In a star like the Sun, the pressure is mostly provided by gas
pressure. In hotter stars, photon or radiation pressure is domi-
nant, but in the Sun this is ∼ 10−3𝑝gas.
Even in the Sun, though, the gas is not quite a classical ideal gas:
quantum mechanics is already relevant. There is an equation
we will derive later in these notes for the pressure due to the
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degeneracy of a gas where the quantum wavefunctions of its
constituent particles are nearly overlapping:

𝑝degeneracy = ℏ
5𝑚𝑒

( 3
8𝜋)2/3𝑛5/3

where ℏ is the quantum of action
ℎ/2𝜋 (1.0546 × 10−27erg ⋅ s), and
𝑚𝑒 the mass of the electron.

It turns out this is about a quarter of the gas pressure at the
core of the Sun!

1.1 The Equation of Hydrostatic Equilibrium

Consider a thin shell of radius 𝑟 (and surface area 𝐴 = 4𝜋𝑟2),
thickness 𝑑𝑟, and mass density 𝜌, enclosing a mass 𝑀𝑟 i.e. 𝑀𝑟 is the total mass integrated

out up to a radius 𝑟.
.

The mass of this shell is 𝑀shell = 𝜌𝐴𝑑𝑟, and from Newton’s
law of gravitation Newton’s Shell Theorem states that

the gravitational attraction of a
symmetric shell of matter, and
therefore by linearity of a ball of
matter, can be treated as if the mass
were concentrated at a point at the
centre.

the magnitude of the gravitational force of
the whole shell inwards is

−𝐺𝑀𝑟𝑀shell
𝑟2

So now we can calculate the net force on this shell (and there-
fore acceleration 𝑎), and require the forces to be in balance:

𝐹net = 𝑀shell𝑎 = 𝑃below ⋅ 𝐴 − 𝑃above ⋅ 𝐴 − 𝐺𝑀𝑟𝑀shell
𝑟2

Letting 𝑃above = 𝑃below + 𝑑𝑃 ,

𝑀shell𝑎 = 𝑎𝜌𝐴𝑑𝑟 = −𝐴𝑑𝑃 − 𝐺𝑀𝑟𝑀shell
𝑟2

and therefore rearranging, in equilibrium (𝑎 = 0) we have the
equation of hydrostatic equilibrium:

𝑑𝑃
𝑑𝑟 = −𝜌𝐺𝑀𝑟

𝑟2 (1.1)

Tattoo this equation on the back of your
eyelids.
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1.2 Plane-Parallel Approximation

This is actually a very familiar equation that we encounter
not just in first-year physics, but in everyday life. Nearly all
the mass of the Earth is in its body, and only a bit less than
a millionth in its atmosphere. So we can consider a situation
where

𝑟 = 𝑅⊕ + 𝑧
where 𝑧 is the height in the
atmosphere≪ 𝑅⊕. We often denote
astronomical bodies by traditional
symbols: ⊕ is the astronomical
symbol for the Earth, and ⊙ the Sun.
There are many other traditional
symbols that are now rarely used.

We can now write this in familiar terms with the acceleration
due to gravity as

𝑑𝑃
𝑑ℎ = −𝜌 ⋅ 𝐺𝑀𝑟

𝑟2⏟
≡𝑔, constant

If we are dealingwith an incompressible liquid likewater, We can rearrange this to solve for the
depth of water required to reach a
gauge pressure Δ𝑃 ≡ 𝑃 − 𝑃0:

𝑧 = −Δ𝑃
𝜌𝑔

For 𝜌water = 1000kgm−3, to get a 1
atmosphere (= 106 Pa) gauge
pressure requires 10.34 m of water.

then
𝜌 is a constant and we simply have

𝑃(𝑧) = 𝑃0 − 𝜌𝑔𝑧

Things are different when your density depends on pressure.
For an ideal gas, 𝑃 = 𝑛𝑘𝐵𝑇 and 𝜌 = 𝑛⟨𝑚⟩ where ⟨𝑚⟩ is the

mean molecular mass, and
isothermal means having the same
temperature everywhere, from ἴσος,
“same”, and θέρμη, “heat”.

- so we have an
equation of state thatwe can use to solve for the vertical structure
of an isothermal atmosphere:

𝑑
𝑑𝑧(𝑛𝑘𝐵𝑇 ) = −⟨𝑚⟩𝑔𝑛

𝑑𝑛
𝑑𝑧 = −⟨𝑚⟩𝑔

𝑘𝐵𝑇 ⋅ 𝑁

𝑛 = 𝑛0 exp (−⟨𝑚⟩𝑔
𝑘𝐵𝑇 𝑧)

𝑛 = 𝑛0 exp−𝑧/ℎ

andwe callℎ the scale height in the atmosphere. Let’s calculate
this for some interesting situations!
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First let’s try an isothermal Earth atmosphere:

mol_earth = 28.964 * m_p # average molecular weight for earth's atmosphere
T_earth = 300 # K; room temperature
g_earth = 9.8 # m/s

h = k_B * T_earth / mol_earth / g_earth

This scale height of 8.7 km is 1.4×10−3𝑅⊕; the atmosphere re-
ally is very thin and can be treated as plane-parallel. This scale
height wouldmean that the air is 96% as dense at the top of the
Q1 Tower, and 36% as dense at the summit of Mt Everest. Q1 Tower on the Gold Coast is the

tallest tower in Australia, at 322.5 m;
Mt Everest, Earth’s tallest mountain,
stands 8849 m tall.

Now let’s plug in some numbers for the Sun, using Python:

m = 0.5 * m_p # kg
# mean molecular weight for ionized hydrogen =
# mean of electron & proton = m_p/2

g = G * M_sun / R_sun**2
h = k_B * Teff_sun / m / g

giving a gravity 𝑔 = 28.0 Earth gravities, and a scale height
of 5.0×10−4 𝑅⊙. So we see that the solar atmosphere has a
tiny scale height relative to the overall size of the Sun, and the
plane-parallel approximation is even better than on Earth!

1.3 Scaling Relations

Most of the time, it is not possible to calculate properties of
realistic stars in closed-form equations, and we will have to
use computer models. But what understanding does this buy
us? It is often just as important to have a sense of how these
properties scale with one another in general terms, even if we
might not be able to estimate actual numbers to better than an
order of magnitude.
As a first example, let’s estimate the pressure at the centre of
the Sun. Ideally, we would solve for the full stellar structure

9



using some equation of state, and then integrate 𝑑𝑃
𝑑𝑟 from zero

at the surface 𝑟 = 𝑅⊙ all the way to the core. Instead, we’re
going to do something very handwavy. Let’s rearrange the 𝑑𝑃

𝑑𝑟
in Equation 1.1 to instead be the mean gradient 𝑃/𝑅⊙:

𝑑𝑃
𝑑𝑟 = −𝜌𝐺𝑀𝑟

𝑟2
𝑃

𝑅⊙
≈ ⟨𝜌⟩𝐺𝑀⊙

𝑅2
⊙

𝑃 ≈ ⟨𝜌⟩𝐺𝑀⊙
𝑅⊙

≈ 𝑀⊙
4/3𝜋𝑅3

⊙

𝐺𝑀⊙
𝑅⊙

≈ 𝐺𝑀2
⊙

4/3𝜋𝑅4
⊙

∝ 𝐺𝑀2
⊙

𝑅4
⊙

Remarkably, it can be shown
analytically (Milne 1936) that
𝑃 > 𝐺𝑀2

8𝜋𝑅4 for an arbitrary star - so
we are not even too far from the exact
solution with these mathematical
sins. It is often the case that very
coarse approximations differ from
exact solutions by a factor of order
unity; we will therefore often drop
these factors and just think about the
scaling.

which for the Sun, gives 1.1×1015 Pa pressure, which iswithin
an order of magnitude of the central pressure of 2.3 × 1016 Pa
in the Standard Solar Model (Guenther et al. 1992).
We are going to do this kind of approximation a lot in these
notes: to estimate how nuclear reactions scale with tempera-
ture, how stellar luminosities depend on mass, how stars form
and how they die - and we will also tackle real computer mod-
els of these processes, so that we build both intuitive under-
standing and accurate models we can fit to data. Both are es-
sential tools in astronomy. “May God us keep From Single

vision & Newtons sleep.” — William
Blake, Letter to Thomas Butts, 22
November 1802.
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2 Timescales in Stars

We can be fairly sure that we are in hydrostatic equilibrium in
a star, because we can calculate the timescale for variations in
the pressure in a star to propagate through its body.
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